Effects of Acid and Temperature in Hydrolysis
نویسندگان
چکیده
The kinetics of cellulose hydrolysis under extremely low acid (ELA) conditions (0.07 wt%) and at temperatures >200°C was investigated using batch reactors and bed-shrinking flow-through (BSFT) reactors. The maximum yield of glucose obtained from batch reactor experiments was about 60% for α-cellulose, which occurred at 205 and 220°C. The maximum glucose yields from yellow poplar feedstocks were substantially lower, falling in the range of 26–50%. With yellow poplar feedstocks, a large amount of glucose was unaccounted for at the latter phase of the batch reactions. It appears that a substantial amount of released glucose condenses with nonglucosidic substances in liquid. The rate of glucan hydrolysis under ELA was relatively insensitive to temperature in batch experiments for all three substrates. This contradicts the traditional concept of cellulose hydrolysis and implies that additional factors influence the hydrolysis of glucan under ELA. In experiments using BSFT reactors, the glucose yields of 87.5, 90.3, and 90.8% were obtained for yellow poplar feedstocks at 205, 220, and 235°C, respectively. The hydrolysis rate for glucan was about three times higher with the BSFT than with the batch reactors. The difference of observed kinetics and performance data between the BSFT and the batch reactors was far above that predicted by the reactor theory. Index Entries: Yellow poplar; cellulose hydrolysis; bed-shrinking flowthrough reactor; kinetics.
منابع مشابه
Acid Hydrolysis of Pretreated Palm Oil Lignocellulosic Wastes
Palm oil solid wastes consist of cellulose, hemicellulose and lignin. In this study, a single stage of acid hydrolysis process of palm oil empty fruit bunch (EFB) for production of fermentable sugar was carried out under moderate temperature (45°C) and ambient pressure. The effect of four different process variables such as solid size, HCl concentration, solid percentage and temperature were in...
متن کاملHydrolysis of Sorghum (Broomcorn) in Diluted Hydrochloric Acid
Effective conversion of lignocellulosic material as renewable energy source has significant reflection on economic and environmental impact. Diluted acid hydrolysis at optimal condition was used to liberate fermentable sugar. The sorghum stalks, the alkali pretreatment of biomass and hydrolysis in diluted hydrochloric acid were investigated. The hydrolysis reaction was carried out in a 5L react...
متن کاملThe effect of Sulfuric acid and Maleic acid on characteristics of nano-cellulose produced from waste office paper
Present paper examines the effect of acid type and hydrolysis conditions on morphology, size, yield and crystallinity of produced cellulose nanocrystal (CNC). Cellulose obtained from waste office paper was hydrolyzed under the same conditions by Maleic acid (MA) and Sulfuric Acid (SA) in separate treatments. Also this cellulose was hydrolyzed under different timing and temperature by MA and SA...
متن کاملThe effect of Sulfuric acid and Maleic acid on characteristics of nano-cellulose produced from waste office paper
Present paper examines the effect of acid type and hydrolysis conditions on morphology, size, yield and crystallinity of produced cellulose nanocrystal (CNC). Cellulose obtained from waste office paper was hydrolyzed under the same conditions by Maleic acid (MA) and Sulfuric Acid (SA) in separate treatments. Also this cellulose was hydrolyzed under different timing and temperature by MA and SA...
متن کاملSurfactant-Aided Phosphoric Acid Pretreatment to Enable Efficient Bioethanol Production from Glycyrrhiza Glabra Residue
Glycyrrhiza glabra residue (GGR) was efficiently subjected to concentrated phosphoric acid (PA) pretreatment with/without surfactant assistance, and promising results were obtained following separate enzymatic hydrolysis and fermentation (SHF) of the biomass. Pretreatment was carried out using 85 % PA either at 50 or 85 °C with 12.5 % solid loading for 30 min. In parallel experiments, ...
متن کاملEffects of Condition Enzymatic Hydrolysis on Degrees of Hydrolysis and Antioxidant Activity of Head Protein of Bighead (Aristichthys nobilis)
Background and Objectives: Enzymatic hydrolysis is an effective practical technology that recovers valuable proteins from far-less farmed fish without losing their nutritional characteristics. Enzymatic hydrolysis of protein sources such as aquatic animals is a type of protein recycling. In the present study, effects of temperature, time and concentration of papain enzyme on hydrolysis degree a...
متن کامل